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We reply to the Comment of Grigutsch and Stannafiebys. Rev. B56, 7323 (1997] about our paper
[Phys. Rev. B54, 3765(1996)]. It is shown that there are defined conditions in which an elastic approach to
study some features of the physics of the walls appearing above thdefieksz threshold can be instructive,
and even recommended. We analyze the torque balance equation and the exact solution of an equation in our
previous paper to show that there are no arbitrary elastic constants to be fixed. Instead of this we show that they
arise naturally as integration constants of the Euler-Lagrange equation which must be determined in the
transient fluid flow period. Finally, using the exact solution of the elastic problem, we show that there are no
mistakes in our computations and interpretatid®L063-651X97)09911-X]|

PACS numbgs): 61.30.Gd, 61.30.Jf, 64.70.Md

We thank the authors of the Comméi for the attention Now, being aware of this well-established theory and phe-
devoted to our papd®]. They claim that we have described nomenology, let us explicitly write the torque balance equa-
the walls appearing above the Edericksz threshold, for tion. In the planar geometry, used[ig], it becomed8]
some nematic materials, in terms of a purely elastic theory.
They observe that we have introduced arbitrary elastic pa- 2_ .2
rameters and that with the approach proposed by us we can- 71016=71Way = Y2l A=) F (Ao Ayy )Ny ]
not describe the wavelength selection mechanism giving ori- + Kse[(ﬁi 6)+(926)]+ Koo ﬂ§9)+XaH anny,
gin to these structures. Afterwards they present a brief Y
historical description of the evolution of the subject in the )
last twenty years, and suggest that in our paper we have
omitted it. Furthermore, they analyze our calculations andyhere, as usual, it is not considered the inertial term,
concluder](preﬁlcpj)lgatelyg as v(\j/e will showthat, even if our  andy, andy, are the shear torque coefficients. Furthermore,
approach could be admitted, our computations were wrong, 1 1

H : qg. (l) Aaﬁ_z(&avﬂ—i_aﬁ]}a)i ny_i((?xvy_(?yvx)y
and that the theory we proposed is not appropriate for thex=cos9(x,y,z) and n, = siné(xy.?). This equation indicates

description of the experimental results we reported. In orde hat the director bending is fixed by the action of three

to respond to all these objections we start by briefly review- . i . . .
ing some fundamental points on this subject. mechanisms: the flow of the fluid, the elastic resistance of

Let us begin by analyzing the motivations of our StatiCthe medium, and the external magnetic field. However, the

approach. In a remarkable work Lonbeztal. [3] showed fluid flow only works for a few minutes in a transient way,

how these walls arise in the nematic medium. Using the so2nd the walls can be observed for a larger time. This means

lution of the anisotropic version of the Navier-Stokes equa—that after some minutes we can cons!@ep;B:WXy:O and

tion [4—6], the torque balance equation, and the equation ofjta:o' and the torque balance equation becomes
continuity, they were able to show that the walls formation

has an effective viscosity which is lower than the one of the Kgs[((;)z(g)+((9§9)]+ Ko 326) + xoH anny:(), 2)
matter movement forming the homogeneous alignment.

Their result is based on the fact that at the initial moments

there is an exponential growth of the fluid velocity in the Which clearly shows that, as soon as the fluid flow stops, the
direction of the applied magnetic field, as well as a correlatedlynamics of the director is determined by the elastic term
exponential growth in the director bending. In this scenarioand the external magnetic field. Moreover, this is the Euler-
the fastest growth mode would determine the wavelength ofagrange equation obtained from the minimization of the
the periodic walls. In another remarkable work Srajer,Frank elastic energy, which, of course, cannot describe the
Fraden, and Meyef7] studied this selection mechanism a arising of the walls. But, once this equation is built up, the
little bit more, and included some nonlinearity. They found metastable walls have to be the solution of it. Consequently,
(Fig. 7 of[7]) that there is really a fast growth mode of the if, for instance, one is interested not in the genesis of these
fluid flow in the initial instants, and that the selection mecha-structures, but in their geometrical properties and parameters,
nism rea”y works. But this Ve|ocity growth rap|d|y stops: it the equation to be investigated is this one. It was for this

decreases and becomes nearly zero in a few minutes. ~ reason that we proposed a static approach in our work: the
walls must be the solution of this equation simply because
they exist in a quasistatic situation described by this equa-

*Permanent address: Departamento dgicR) Universidade Es- tion. )
tadual de Londrina, Campus Universita 86051-970 Londrina, In the W_)0rk of Lonberget al.[3] the profile of these walls,
ParanaBrazil. along thee, direction, was assumed to be a harmonic func-
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tion (Eq. (1) of [3], in which theé; direction is the§; direc- Using the definition ofk? given above it is possible to
tion of our papex. Since the purpose of that work was to expressC, ¢;, and ¢, in terms of k% We obtain C
describe the mechanism of the viscosity reduction this was & 03[ k?/(1+k?)2](h?—1)%/h?, ¢o=263[k?/(1+k?)2](h?
very clever insight. But, far from the matter flow initial mo- —1)%/h?, @,=@y/k2. Therefore, sinc&? is a function ofC,
ments there is no reason to accept a harmonic function deve conclude that it is just a constant of integration control-

scribing the profile of these walls along tee direction. In  ling the shape of the elliptic sine functidd0], i.e., when

our paper[2] we assumed that the maximum bend of thek—0 we have sn{,k)—sinu, and whenk—1 we have
director, for large fields, is not achieved just along a line butSN(U,k)—tanhu. Notice that this was exactly our hypothesis
over a region(see Fig. 2 of2]). Thus, the purpose of the about the shape of the walls. In other words, there is a pa-

paper was to correlate the dimensions of this saturated regid@meter determined by the initial conditions, in this case
with the bending of the curve of 17 vs h2. This result is  that controls the shape of the wall. Wher-0 we have a

clearly shown in the figures of our pagé, mainly in Figs. sine function, which indicates that we are close to the critical
2 and 4. point. Whenk increases, a saturated region which reaches
To show that there is in fact a saturation of the profile ofthe maximum dimension whein— 1 arises. Furthermord?
4 Must be a function dfi, otherwise a plot of %> vsh? would
be a straight line. But, since a bending in the curve has been

- 2 . -
outline the exact solution of these walls that have been foungxlperlr‘r;‘entally obseved” must C?a?]ge ]:N'th the magnetic
by us after the publication of that pagé. This solution has "€ d. The exact determlnatlon of this function Is now in
the advantage of giving us exactly the meaning of the inteProgress and, of course, it must be fixed at the transient fluid

gration constants of E42) and its connection with the tran- 1OW period. Moreover, the solutiom(t) can be separated
sient instants of the walls arising. into two terms: the amplitude of the oscillation, given ¢y,

Let us consider thaB(x,y,z)= 7(x)sin(my/b)sin(rz/d) and the shape of the wall, given by the elliptic sine function.
and write the magnetic term of the free energy in theltiS exactly what we have supposed in our pa#r Hence,
form of a functional:I[ 7(x)]= f sirfodydz=(1/4)7(x) — (3/ to precisely know the shape of the wall and its wavelength, it
64)7%(x)+O(7%(x)). By performing some change of is enough to determin&?. But this parameter can not be

; - fixed by an elastic model since it originates from the tran-
scale in the elastic free energy, namepgH2=K /b)? : g . .
9y He=Kag(m/b) sient matter flow, and it is an integration constant of €.

2
+Ko(m/d)?, h=H/H., and x=\Kss/(xaH)t, 65=8/3, At this point, the question of why we did not use the exact
one can show that Eq2) assumes the form solution of Eq.(3) in our original work, but an approximated
one can be argued. To clearly answer this question let us
2 2 1,3 discuss the nature of the approximation we did and how it is
dtn—(1—h?)n— —h?y°=0, 3) ppI > alC
05 connected to the exact solution. The motivation of our ap-
proximation was that, due to the symmetry of the director,
which has the conserved quantitC=3(d,7)%—(1/ the conjigurations withd= ¢q gnd 0=— g are eq_uivalgnt.
2)(1-h?) 772—(1/463)h2774. This equation can be used to The object making the transition from one configuration to
the another one is the wall. In the region between the walls,
with length A, a constant bend of the director was assumed.
Our aim was simply to connect the magnitude of this region
(4) with the magnetic field and with the bending of the curve of
1/\? vs h?. The fact that this can be done has been demon-
strated above in the analysis of the exact solution, where it
where ¢, and ¢; are the turning points of the oscillating was recognized that, even being distinct parameterand
function 7(t). Since Eq.(4) is an elliptic integral of the first k2 have similar meaning: they control the shape of the wall.

the director along thé; direction, and that this can indee
be viewed in the bending of the curve ofA¥/vs h?, we

find #(t). By the usual procedure we find

_\/203 7 d7
o= V7

— o2 (- ¢?)

kind, it can be written in terms of elliptic functions.0], Furthermore, it can be argued that our work lost its inter-
giving est once the exact solution was discovered. This is not true,
because, as well known, sometimes an approximated solu-
h? tion is more fruitful than the exact one. For example, the
n(t)= cPoSF< ¢ 1\ 2—92t,k) ; (5)  family of walls that we found as the solution of E@) are
0

known in the statistical mechanics literatUrel] as kinks
linking two equivalent stable ground states in a model which
allows symmetry breaking. Usually it is very important to
understand how these structures interact. In fact, it is known
that the walls are metastajl&2,13 structures that disappear
o . . . after a long time. Of course these instabilities must follow, in
From Eq.(4) it is also possible to obtain the peried some way, from some kind of interaction among them.
) Therefore, an easy way to obtain this interaction is to sup-
(2_77) :(Z (6) pose each wall acting as an isolated object and to find the
T 2 ' interaction among them which is responsible for the ob-
served structures. This procedure is known as a soap of kinks
whereK (k) is the complete elliptic integral of the first kind [11], and it usually requires the isolation of just one kink. Of
[10]. course, with the exact solution one cannot isolate just one

where sn(,k) is the elliptic sine function of argumekt and
we have chosetypin such a way that sn(K)=0. For Eq.(5)
we havek?= ¢,/ ¢,. Therefore the argument is limited to the
interval O<k®<1.

2

(h*-1) -

(1+K%) [K(k)]?
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wall in order to get some insight about the interaction. In thishave to be determined by the transient fluid flow. Therefore
situation, the solution must be searched for in another marthey are not arbitrary elastics parameters. Furthermore, as
ner. pointed out in[1], the amplitudep,, is really zero forl=1,

To conclude, we stress again that the aim of our approachnd there is no mistake about it. To verify that this is indeed
was not to develop a complete expression for the wavelengttiue it is enough to recall the exact expression for it,
of the walls in terms of a purely elastic theory. As has beenpy=263k?/(1+k?)?](h?—1)?/h?, and to realize that=1
clearly shown above, this would be impossible. But, once theorresponds t&?= 0. Therefore we believe that there was an
walls have been built in a dynamical transient situation, theséncorrect interpretation by the authors[dff about this point,
structures have to be the solution of Ef), and its param- because, as shown by the exact solution, our computations
eters; the integration constants of this differential equationare right.
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